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Introduction

BPRE

Branching processes in random environments (BPRE) have been
studied by many authors, since the introduction of the model by Smith
and Wilkinson (1969) and the fundamental work of Athreya and Karlin
(1971). Important progress has been made in recent years, see e.g.:

Critical and subcritical cases, survival probability and conditional
limit theorems: Vatutin & Dyakonova (2020, 2018), Vatutin &
Wachtel (2018), Le Page, Peigné & Pham (2018) in the multi-type
case, Afanasyev, Böinghoff, Kersting & Vatutin (2014, 2012),
Afanasyev, Geiger, Kersting & Vatutin (2005) in the single type
case.
Supercritical case, large deviations: Buraczewski & Dyszewski
(2020), Grama, Liu & Miqueu (2017), Bansaye & Böinghoff (2014,
2013, 2011), Huang & Liu (2012), Bansaye & Berestycki (2009).

See also the book by Kersting & Vatutin (2017) and many ref. therein.
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Introduction

BPIRE

Branching processes with immigration in random environments
(BPIRE) have been less studied, but deserve our attention due to a
number of applications in various fields. For example:

Kesten, Kozlov and Spitzer (1975), Key (1984), Hong and
Zhang(2016) used a BPIRE to give limit laws for a random walk in
a random environment;

Bansaye (2009) studied a model of cell contamination by
investigating a BPIRE;

Vatutin (2011) considered a BPIRE to study polling systems with
random regimes of service.

With the immigration, some properties of the branching process
remain the same, while some others become different.
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Introduction

Objective

We consider a supercritical branching process (Zn) with immigration in
an i.i.d. environment ξ = (ξn), with

µ = E log m0 > 0, σ2 = Var log m0 ∈ (0,∞),

where m0 =
∑

kpk(ξ0) is the expected value of the offspring distribution
{pk(ξ0) : k ≥ 0} at time 0, given the environment. For simplicity,
assume p0(ξ0) = 0. We are interested in:

1 the absolute error of the Gaussian approximation:

sup
x∈R

∣∣∣∣P( log Zn − nµ√
nσ

≤ x
)
− Φ(x)

∣∣∣∣ ≈? Φ(x) =

∫ x

−∞

e−t2/2
√

2π
dt;

2 the relative error of the Gaussian approximation:

P
(

log Zn−nµ
σ
√

n > x
)

1− Φ(x)
∼?
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The model

Description of BPIRE

Let ξ = (ξ0, ξ1, ξ2, · · · ) be a sequence of independent and identically
distributed random variables taking values in some space Θ indexed
by time n ∈ N = {0, 1, 2 · · · }, which represents the random
environment. Each realization of ξn corresponds to two probability
distributions on N. One is the offspring distribution denoted by
p(ξn) = {pk(ξn); k ≥ 0}, where

0 ≤ pk(ξn) ≤ 1, and
∑

k

pk(ξn) = 1.

The other is the immigration distribution denoted by
p̂(ξn) = {p̂k(ξn); k ≥ 0}, where

0 ≤ p̂k(ξn) ≤ 1, and
∑

k

p̂k(ξn) = 1.
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The model

Definition of a BPIRE

A branching process (Zn)n≥0 with immigration (Yn)n≥0 in the random
environment ξ (BPIRE) can be defined as follows:

Z0 = 1, Zn+1 =

Zn∑
i=1

Xn,i + Yn, n = 0, 1, 2, · · ·

where given the environment ξ, Xn,i(i = 1, 2, · · · ), Yn, n ≥ 0, are
independent of each other, each Xn,i(i = 1, 2, · · · ) has the same
distribution p(ξn), Yn has the distribution p̂(ξn).
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The model

Quenched law and annealed law

Let (Γ,Pξ) be the probability space under which the process is defined
when the environment ξ is given. As usual, Pξ is called quenched law.

The total probability space can be formulated as the product space
(Γ×ΘN,P), where P(dx, dξ) = Pξ(dx)τ(dξ), τ is the law of the
environment ξ. The total probability P is usually called annealed law.

The quenched law Pξ may be considered to be the conditional
probability of the annealed law P given ξ. The expectation with respect
to Pξ (resp. P) will be denoted by Eξ (resp. E).

Y. Wang (ZUEL,CHINA) BPIRE 10 / 28



Main Results

Outline

1 Introduction

2 The model

3 Main Results

4 Proofs

Y. Wang (ZUEL,CHINA) BPIRE 11 / 28



Main Results

Limit theorems on a BPIRE

The following limit theorems have been proved in Wang and Liu (2017)
for a BPIRE under suitable conditions (with p0(ξ0) = 0 a.s.):

1 Law of large numbers (LLN): log Zn
n → E log m0 a.s.

2 Central limit theorem (CLT): with Φ(x) =
∫ x
−∞

e−t2/2
√

2π
dt,

sup
x∈R

∣∣∣P( log Zn − nE log m0

σ
√

n
≤ x
)
− Φ(x)

∣∣∣→ 0

3 Large Deviation Principle (LDP), which gives an equivalent for

log P(
log Zn − nE log m0

n
> ε), for fixed ε > 0.

4 Moderate Deviation Principle (MDP), which gives an equivalent of

log P(
log Zn − nE log m0

an
> ε), where

an

n
→ 0,

an√
n
→∞.

Y. Wang (ZUEL,CHINA) BPIRE 12 / 28



Main Results

Berry-Esseen’s bound and Cramér’s MD expansion

Our main objective is to show Berry-Esseen’s bound and Cramér’s
moderate deviation expansion for log Zn: under suitable conditions, we
will prove

1 Berry-Esseen’s bound, which gives the rate of convergence in the
central limit theorem, the absolute error in the Gaussian
approximation: with Φ(x) =

∫ x
−∞

e−t2/2
√

2π
dt,

sup
x∈R

∣∣∣P( log Zn − nE log m0

σ
√

n
≤ x
)
− Φ(x)

∣∣∣ ≤ C√
n

2 Cramér’s moderate deviation expansion for log Zn, which improves
the MDP, and gives an asymptotic expression of the relative error
of the Gaussian approximation:

P
(

log Zn−nE log m0
σ
√

n > x
)

1− Φ(x)
∼ ..., 0 ≤ x = o(

√
n).
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Main Results

Berry-Esseen’s bound

Let m0 =
∑

k kpk(ξ0). Assume that

p0(ξ0) = 0 a.s., µ = E log m0 ∈ (0,∞), σ2 = var (log m0) ∈ (0,∞).

A1. ∃δ ∈ (0, 1] such that E| log m0|2+δ <∞.
A2. ∃p > 1 such that E

(
X0
m0

)p
<∞ and E

(
Y0
m0

)p
<∞, where X0 has

the offspring distribution {pk(ξ0)}, and Y0 has the immigration
distribution {p̂k(ξ0)}, given the environment.

Theorem 1

Under conditions A1 and A2, we have, with Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt,

sup
x∈R

∣∣∣∣P( log Zn − nµ
σ
√

n
≤ x
)
− Φ(x)

∣∣∣∣ ≤ C
nδ/2 ( optimal when δ = 1).
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Main Results

Cramér’s moderate deviation expansion

Theorem 2

Assume that Emε
0 <∞ for some ε > 0, E Xp

0
m0
<∞ and E Yp

0
m0
<∞ for

some p > 1. Then for 0 ≤ x = o(
√

n), we have, with µ = E log m0, as
n→∞,

P
(

log Zn−nµ
σ
√

n > x
)

1− Φ(x)
= exp

{
x3
√

n
L

(
x√
n

)}[
1 + O

(
1 + x√

n

)]
(3.1)

and

P
(

log Zn−nµ
σ
√

n < −x
)

Φ(−x)
= exp

{
− x3
√

n
L

(
− x√

n

)}[
1 + O

(
1 + x√

n

)]
,

(3.2)
where L is Cramér’s series of the log-Laplace transform of log m0.
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Main Results

Application in the estimation of E log m0 by log Zn
n

1 LLN: log Zn
n is a convergent estimator of the criticality para. E log m0

2 The CLT gives the Gaussian approximation of the error probability
P(| log Zn

n − E log m0| > ε) with ε = σx√
n :

P(| log Zn

n
− E log m0| >

σx√
n

) ≈ 2(1− Φ(x)) close to 0

3 Berry-Esseen’s bound gives an estimation of the absolute error in
the above gaussian approximation.

4 Moderate Deviation Principle gives an estimation of

log P(| log Zn

n
− E log m0| > εn), where εn → 0,

√
nεn →∞

5 Cramér’s moderate deviation expansion gives an approximation of

P(| log Zn

n
− E log m0| > εn), where εn → 0.
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Proofs

The main idea is to compare log Zn with the random walk

Sn = log m0 + · · ·+ log mn−1

following Grama, Liu and Miqueu (2017), and using the decomposition

log Zn = log Wn + Sn,

where Wn := Zn
Πn

with Πn = m0 · · ·mn−1. Assume E log m0 > 0.

Lemma 1 (a.s. convergence of Wn and non-degeneracy of W)
The sequence (Wn,Fn) is a submartingale under Pξ and P. Assume
that E log+(Y0/m0) <∞, then the limit

W := lim
n→∞

Wn exists in [0,∞) a.s.

Moreover, P(W > 0) > 0 iff E[ X0
m0

ln+ X0] <∞ .
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Proofs

Convergence of the submartingale in Lp(P), p > 1

Lemma 2 (Convergence of (Wn) in Lp(P), p > 1)
Assume P(Y0 = 0) < 1. Let p > 1 be fixed. Then, the sequence (Wn)

converges in Lp under P iff

Em−p
0 < 1, E

(
Yp

0
mp

0

)
<∞ and E

(
Xp

0
mp

0

)
<∞. (4.1)

Remark
If P(Y0 = 0) = 1 (the usual branching process in random environment),
Guivarc’h and Liu (2001) proved that Wn

Lp

−→ W iff Em1−p
0 < 1 and

E( X0
m0

)p <∞. Lemma 2 shows that there are indeed different behaviors
caused by the immigration, compared with a branching process
without immigration: the critical value for the existence of moments of
W is not the same.
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Proofs

Exponential convergence of log Wn in L1

The following result concerns the exponential speed of convergence of
log Wn to log W.

Lemma 3 (Exponential convergence of log Wn in L1)

Assume A1 and A2. Then there exist two constants C > 0 and
δ ∈ (0, 1) such that for all n ≥ 0,

E |log Wn − log W| ≤ Cδn. (4.2)
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Proofs

Concentration inequality for (Sn, log Zn)

With the preceding lemmas we can prove a concentration inequality for
the joint law of Sn and log Zn. It shows that log Zn and Sn are similarly
distributed: for all x, they are simultaneously larger than x , or
simultaneously less than x, with large probability.

Lemma 4 (Concentration inequality for (Sn, log Zn))

Assume A1 and A2. Then for all x ∈ R, we have

P
(

log Zn − nµ
σ
√

n
≤ x,

Sn − nµ
σ
√

n
≥ x
)
≤ C

nδ/2 (4.3)

and

P
(

log Zn − nµ
σ
√

n
≥ x,

Sn − nµ
σ
√

n
≤ x
)
≤ C

nδ/2 . (4.4)
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Proofs

Proof of the Berry - Esseen bound using the
concentration inequality for (Sn, log Zn)

P
( log Zn − nµ

σ
√

n
≤ x
)

= P
( log Zn − nµ

σ
√

n
≤ x,

Sn − nµ
σ
√

n
≤ x
)

+ P
( log Zn − nµ

σ
√

n
≤ x,

Sn − nµ
σ
√

n
> x
)

= P
(

Sn − nµ
σ
√

n
≤ x
)

+ P
(

log Zn − nµ
σ
√

n
≤ x,

Sn − nµ
σ
√

n
> x
)

−P
(

log Zn − nµ
σ
√

n
> x,

Sn − nµ
σ
√

n
≤ x
)

= P
(

Sn − nµ
σ
√

n
≤ x
)

+ O
(

1
nδ/2

)
.

So Theorem 1 follows from the classical Berry-Esseen bound for Sn.
Y. Wang (ZUEL,CHINA) BPIRE 22 / 28



Proofs

Proof of Cramér’s expansion for 0 < x ≤ 1

By the Berry - Esseen bound, we have∣∣∣∣P( log Zn − nµ
σ
√

n
> x
)
− (1− Φ(x))

∣∣∣∣ ≤ C√
n
.

Dividing both sides by 1− Φ(x), we get∣∣∣∣∣∣
P
(

log Zn−nµ
σ
√

n > x
)

1− Φ(x)
− 1

∣∣∣∣∣∣ ≤ C
(1− Φ(1)).

√
n
,

Therefore,
P
(

log Zn−nµ
σ
√

n > x
)

1− Φ(x)
= 1 + O

(
1√
n

)
.
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Proofs

Proof of Cramér’s expansion for 1 ≤ x = o(
√

n) (1)

Measure change like Cramér’s change for the associated random
walk: recall that

P(dξ, dx) = Pξ(dx)τ(dξ)

with τ = τ⊗N0 = the law of ξ = (ξ0, ξ1, · · · ), τ0 = the law of ξ0.
Define the new annealed law Pλ by

Pλ(dξ, dx) = Pξ(dx)τλ(dξ) (4.5)

with τλ = τ⊗N0,λ , τ0,λ(dx) = m(x)λ

L(λ) τ0(dx), m(x) = E(X0|ξ0 = x),
L(λ) = Emλ

0 = eψ(λ)

The measure change from P to Pλ corresponds to Cramér’s
change for the random walk Sn =

∑n−1
i=0 log mi (n ≥ 1).
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Proofs

Proof of Cramér’s expansion for 1 ≤ x = o(
√

n) (2)

Since log Zn = Sn + log Wn, we have the decomposition:

log Zn − nµ
σ
√

n
=

Sn − nµλ
σ
√

n
+

log Wn

σ
√

n
+

(µλ − µ)
√

n
σ

,

where µλ = Eλ log m0.
Choosing λ > 0 as solution of x = (µλ−µ)

√
n

σ , writing Yλn = Sn−nµλ√
nσλ

and Vλn = log Wn√
nσλ

with σ2
λ = variance of log m0 under Pλ, we obtain,

with ψ(λ) = logEeλX = logEmλ
0 ,

P
(

log Zn − nµ
σ
√

n
> x
)

= P(Yλn + Vλn > 0) (4.6)

= Eλ
[
e(nψ(λ)−λSn)1{Yλn + Vλn > 0}

]
= exp (nψ(λ)− nλµλ)× (4.7)

Eλ
[
e−λσλ

√
nYλn 1{Yλn + Vλn > 0}

]
Y. Wang (ZUEL,CHINA) BPIRE 25 / 28



Proofs

Proof of Cramér’s expansion for 1 ≤ x = o(
√

n) (3)

Using Yλn = Sn−nµλ√
nσλ
→ N(0, 1) in law under Pλ and Vλn = log Wn√

nσλ
→ 0

to conclude. To make everything precise, we need:

1 Study the joint law of Yλn and log Wn under Pλ uniformly for small λ
2 Use the fact that (Zn) is still a supercritical branching process in a

random environment satisfying Berry-Essen’s bound.
3 Prove that under Pλ, log Wn → log W in L1 uniformly for small λ:

sup
0≤λ≤λ0

Eλ| log W − log Wn|p ≤ Cδn
0 , δ0 < 1

4 Prove that W admits harmonic moments under Pλ, uniformly for
small λ: for some a > 0,

sup
0≤λ≤λ0

Eλe−tW ≤ Ct−a
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Proofs
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Proofs
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